
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Displacement

\qquad

- The change in position of an object. \qquad
$\Delta d=d_{f}-d_{i}$
where:
Δx is the displacement
d_{f} is the final position
d_{0} is the initial position

Velocity

- Average velocity is displacement (change in position) divided by the time of travel.

$$
\bar{v}=\frac{\Delta d}{\Delta t}=\frac{d_{f}-d_{i}}{t_{f}-t_{i}}
$$

Where:
\bar{v} is the average velocity x is the displacement t is the time

- The average velocity of an object does not tell us anything about what happens to it between the start and end points.
- The motion needs to be divided into smaller intervals to get more detailed information.
- Instantaneous velocity, v, is the average
\qquad
\qquad
\qquad velocity at a specific instant in time (or over an infinitesimally small time interval).

Speed

- Average speed is the distance traveled \qquad divided by elapsed time.
- Instantaneous speed is the magnitude of
\qquad instantaneous velocity.

Acceleration

- Average acceleration is the rate at which velocity changes.

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{0}}{t_{f}-t_{0}}
$$

Where:

\bar{a} is the average acceleration
v is the velocity
t is the time

- Acceleration is a vector in the same direction as the change in velocity.
- Since velocity is a vector, it can change
\qquad either in magnitude or in direction.
- Acceleration is therefore a change in
\qquad either speed or direction, or both.
- When an object's acceleration is in the \qquad same direction of its motion, the object will speed up.
- When an object's acceleration is opposite to the direction of its motion, the object will slow down.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- The motion of an object can be described mathematically by using equations showing the displacement, velocity, and acceleration of an object at a given time.
\qquad
- Notation and assumptions:
- $t_{i}=0$, so t will represent the final time.
\qquad
- $d_{i}=0$, so d will represent the final position
- Motion will be in one dimension \qquad
- Velocity will be represented as follows:
- v_{i}, v_{f} - initial and final velocity \qquad
- Acceleration is constant
- $\bar{a}=a=$ constant \qquad
\qquad
- Rearranging the equations defining velocity.

$$
\begin{aligned}
& \bar{v}=\frac{\Delta d}{\Delta t}=\frac{d}{t} \\
& \text { For constant acceleration } \\
& \bar{v}=\frac{v_{i}+v_{f}}{2} \\
& \frac{v_{i}+v_{f}}{2}=\frac{d}{t} \\
& d=\left(\frac{v_{i}+v_{f}}{2}\right) t
\end{aligned}
$$

- Rearranging the equations defining acceleration.

$$
\begin{aligned}
& a=\frac{\Delta v}{\Delta t} \\
& a=\frac{v_{f}-v_{i}}{t} \\
& v_{f}=v_{i}+a t
\end{aligned}
$$

- Solve the first equation for position, make the two equations equal to each other and solve for d.
$2\left(\frac{d}{t}\right)-v_{i}=v_{i}+a t$
$2\left(\frac{d}{t}\right)=2 v_{i}+a t$
$d=v_{i} t+\frac{1}{2} a t^{2}$
- Solve the second equation for time and substitute it into the first equation.

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& t=\frac{v_{f}-v_{i}}{a} \\
& v_{f}=2 a\left(\frac{d}{v_{f}-v_{i}}\right)-v_{i}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Rearrange the equation

$v_{f}+v_{i}=2 a\left(\frac{d}{v_{f}-v_{i}}\right)$
$\left(v_{f}+v_{i}\right)\left(v_{f}-v_{i}\right)=2 a d$ \qquad
$v_{f}^{2}-v_{i}^{2}=2 a d$ \qquad
$v_{f}^{2}=v_{i}^{2}+2 a d$

The Kinematic Equations

\qquad

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& d=\left(\frac{v_{i}+v_{f}}{2}\right) t \\
& d=v_{i} t+\frac{1}{2} a t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a d
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- When air resistance is not a factor, all objects near Earth's surface fall with an \qquad acceleration of about $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- The value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ is labeled \mathbf{g} and is referred to as the acceleration due to
\qquad gravity.
- Since gravity pulls objects towards the \qquad earth's surface, this acceleration is always down (negative).

